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1. INTRODUCTION

This paper concerns the construction of forms of the error function,
e (x)=f(x)—p¥(x), where p} is the best uniform polynomial approx-
imation of degree n to a continuous function fon [—1, +1]. We show that it
is always possible and, from the viewpoint of obtaining explicit results,
expedient to write the error as ¢,=acos(nf+¢), where x=-cos®6,
la|=E,(f), the uniform norm of ¢,(x), and the phase angle ¢ is a
continuous function of #, depending on f and n. Qur classes of explicit best
approximations arise from a novel method of determining suitable phase
angles in this representation of ¢,(x). The details of this procedure are given
in Section 3. It will be evident from the discussion there that our method
yields transcendental functions ¢,(x) as well as rational ones. Although we
do not pursue a study of the former systematically in this paper, we will
illustrate their occurrence by means of an example (cf. Example 2 of
Section 5). The remainder of the paper is devoted to a detailed investigation
of various classes of rational ¢,(x) which are generated by our process.

Bernstein [I] used phase angles to determine the class of rational
functions which deviate least from zero on [—1, +1], where the numerator is
monic of degree n + m, and the denominator is monic of degree m and has
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arbitrary but fixed zeros outside of [—1, +1]. These functions are
acos(nf + 4, + +-- + d,,), where each J, is constructed using one of the fixed
poles, and a is chosen to render the appropriate terms monic. One of the
results of our paper is the construction of elements of this class, and the
corresponding phase angles.

In [5] Rivlin exhibited p} for

Ty(x) — 1T, _q(x)
14+ 12— 2T (x) °

Sx)= z thaj+b(x):

Jj=0

a>0,b>0, a and b integers, —1 <t < +1, where T,(x) is the Chebyshev
polynomial of the first kind. He showed that

k+1

1— ¢

g,(cos 8) = cos[(ak + b) 8 + ¢(9)]

for ak + b < n <a(k+ 1)+ b, where the exhibited ¢ depended on a but was
independent of k. It turns out that the phase angle here, whose genesis is not
discussed in [5], is one instance of a class of ¢’s obtained in Section 4 of our
paper. Thus, our results represent a wide generalization of those given in [5],
at least as far as phase angle is concerned.

Also, in connection with [5] and phase angles in general, we note that the
first author considered the situations where, for a fixed f(x), ¢ is the same
function of 6 for all the p¥. He showed [4] that this property holds,
uniquely, for certain of the functions given by Rivlin in [5].

More precisely, if fis continuous on [—1, +1] and

Sf(cos ) — pX(cos 6) = a, cos(akf + ¢)

for all k> 0 and a fixed positive integer a, where ¢ is a continuous function
of 4, independent of %, and a,, a, are nonzero, then fis Y72, #T,;, up to
multiplicative and additive constant factors.

Many authors have employed phase angle methods to approximate
functions and their best approximations. Prominent among these is Stiefel
[7,8], with whom the nomenclature “phase function” in the context of
Chebyshev approximation seems to have originated. He described certain
phase functions, which are related to the phase angles used in this paper, and
constructed them by an iterative numerical procedure. The structure of error
curves involving phase functions like those of Stiefel is discussed further in
Rowland [6]. Clenshaw [2] used phase angle methods to approximate best
approximations to a polynomial by one of lower degree. That work is
expanded and generalized by Darlington in [3].
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2. PRELIMINARIES

An essential part of this work involves using the sine and cosine functions
with arguments which are functions of some angle. The following lemmas
provide some needed results and are given without proof.

LEMMA 1. Let u(0) and v(0) be continuous, real functions of 6 defined
on 0,<6<6,, such that u*(@)+v?(@)=1. Then we can write
u(8) = cos ¢(8) and v(0) = sin ¢(6), where ¢(8) is continuous for 6, < 0 < 6,.

We may note that certain particular values of u and v correspond to
special values of ¢, as indicated in Table I, where k is an integer.

The behavior of ¢ in [#,, 6,] can be somewhat described in terms of the
appearance of these special values as ¢ goes from 8, to 8,. Some results are
summarized in the following lemma.

LEMMA 2. Let u(8) and v(0) be given as in Lemma 1. If either one of
u(@), v(0) has zeros at both endpoints but not in the interior of 8,, 8,], while
the other function takes each of the values +1, —1 at an endpoint, then ¢
maps onto the intervals indicated in Tables 11 and 111, where k is an integer,
and ¢(8,, 0,] is the range of ¢.

We may also note that if we take two consecutive zeros &,, 8, of either
u(8) or v(f), with the other function taking the same one of the values +1,

TABLE 1

u(@) v(9) $(6)

+1 0 2kn
—1 0 (Qk+Dn
0 +1 (k+dHn
0 -1 (@k+¥Hn

TABLE II
u(f,) =u(8,)=0

sgn u in

v(8,) v(8,) @,,6,) ¢191992|

+1 -1 +1 1Kk + 1)+ 4) 7, 2k + 2) 7]
£ - —1  [@k+3mQk+3)7]

1 41 +1 [k + D7 2k + D) + D x|

—1 41 -1 [(2k + 3) 1, (2k + 3) 7]
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TABLE 11l
v())=v(8,)=0

sgn v in

u(al) u(ez) (9]’ 02) ¢[0|’ 92]
+1 -1 1 [2km, (2k + 1) 7]
+1 -1 -1 [2(k+ )7 Qk+1)7)
—1 #1411 [(2k+1)7 2]
~1 41 ~1  [k+ D2k + 1))

—1 at both of these points, then ¢(6,) = ¢(d,), with value in accordance with
Table I. The sign between the consecutive zeros determines the quadrant
containing ¢(f) for 6, < 6 < 4,.

3. CONSIDERATION OF PHASE ANGLES

According to the Chebyshev Alternation Theorem, f(x) — p¥(x) takes its
extreme values ta, |a| = E,(f), with aliernating signs at least n + 2 times in
[—1,+1]. This corresponds to extrema of ¢,=f(cos#)—pX(cosf) in
0< 0K We claim that the error €, can always be described as
a cos(nf + ¢(0)). Since |e,/a| < 1, we can choose the function ¢ to describe
the behavior of f— p} as a variation in the argument of the cosine function.
In particular, we write ¢(f) = cos " '(¢,/a) — nf and call ¢ the phase of the
error. The choice of ¢ depends on f and n. By choosing ¢(0) to be in [0, 27),
and considering e*‘® to be on the Riemann surface corresponding to e°, we
see that ¢(@) varies continuously as 8 goes from 0 to 7. The argument né + ¢
will have a range including the closed interval with endpoints at ¢(0) and
nn + ¢(n). The range must provide as many extrema of cosine with alter-
nating signs as required for f— p¥. The smoothness of ¢ will depend directly
on the smoothness of f.

Conversely, given the function cos(nf + ¢), with ¢ a continuous function
of @ in [0, 7], a sufficient condition to guarantee that ¢, = a cos(nf + ¢) is
the error for a best uniform polynomial approximation of degree n is that the
range of (nf + ¢) includes at least n + 2 points at which cosine takes its
extreme values with alternating changes in sign. This can be proven by the
method employed in Theorem 4. Since n@ increases linearly from 0 to nz, it
is sufficient to have ¢(0) and ¢(n) be multiplies of 7, with ¢(z) — ¢(0) > =.

In order to satisfy the preceding sufficient condition, it would be desirable
to have a method of selecting ¢ which would give us some information about
its range a priori. It was this objective that led us to the procedure described
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next. It will become evident in Section 4 how this selection process relates to
the range of ¢.

Since ¢, /a = cos nf cos ¢ — sin nf sin ¢, it suffices to determine cos ¢ and
sin ¢ as functions of §. Lemma 1 then suggests the following. Let w(z) be a
function analytic in a region including the unit circle, which maps the unit
circle into itself, that is, |w(e'®)| =1 for 0 < 6 < 2n. If w(e'®) = u(8) + iv(6),
u and v real functions, then we can take cos ¢ = u(8), sin ¢ = v(f). The type
of error function that we get here will correspond, in a rough way, to the
type of function w(z) with which we started. However, it is rather difficult to
recognize when a function w(z) has the required mapping property. The use
of a well-known transformation from analytic function theory will overcome
this difficulty.

Consider the bilinear transformation z = (1 —p)/(l + p), and its inverse
p=(1—2z)/(1 4+ z). These transformations map the imaginary axis and the
unit circle onto each other. Also consider the function f(p) which is
connected to w(z) by the following relations:

_ 1=w((1 —p)/(1 +p))

f(p)= T+ w((l-p)(1+p)

_ 1=/ —2)/(1+2)
L+f((1=2)/(1 +2))

(1)

w(z) (2)

In (1), if w maps the unit circle into itself, then f maps the imaginary axis
into itself, and conversely in (2). Given either w or f with the above property,
we can find the other via (1) or (2).

THEOREM la. Assume the function f(p) is analytic, except for possible
poles, in a region including the imaginary axis. Also, assume f(p) is a real
Sunction, that is, f(p) =f(p). Then a necessary and sufficient condition that,
Jfor each real t, f(it) = ia, a real (and dependent on t), is that f(p) is an odd
Sunction.

Proof. Sufficiency follows from the fact that f(it)=a + bi implies
f(—it)=a — bi =—a — bi, so a=0. Necessity follows from the fact that
f(@t)=io implies f(—it)=—ia =—f(it), and so by the principle of the
permanence of functional relations, f(—p) = —f(p). Q.E.D.

Note that we can extend this class by allowing essential singularities on
the imaginary axis, say, at p =ity, as long as lim,, f(it), ¢ real, exists
(including the case when it is infinite). To sum up, if f(p) is real and odd,
then the corresponding w(z) will have the required mapping property. The
following corollary is now obvious.
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COROLLARY 1. Let f(p) be an odd function satisfying the conditions of
Theorem 1a. Then w(z), given via Eq. (2), maps the unit circle into itself,
and w(e®) = u(8) + iv(6) satisfies u>(0) + v*(9) = 1.

By Lemma | we can write u(f)=cos¢(d) and v(@)=sin ¢(f), so
e'*® = w(e®). It is this function ¢ upon which our considerations are
focused. The question arises as to what restrictions on f will give ¢, via the
steps taken above, which will map [0, n] onto [k, 7, k,7], where k, and &,
are both integers. Such a ¢ will exhibit the behavior of a phase angle of a
special type. We now give a useful formulation which permits us to calculate
cos ¢ and sin ¢ directly from f(p).

Letting z = e'®, we observe that p = (1 —z)/(1 + z) = —i tan(f/2). Write
this as p = —is, s = tan(6/2), and define the real function F by f(it) = iF(¢).
We have
1 —f(=is) 1+iF(s)

we) =17 TCis) - 1—iF(s)
_1—FXs) . 2F(s)
ST G) T FG)
= cos ¢(#) + i sin ¢(0).

The next lemma shows a relation between the behavior of ¢ and f.

LEMMA 3. Let f(p) be an odd function satisfying the conditions of
Theorem 1a and let w(z) be given by (2). Then w(e'®) will attain the values
+1 or —1 if and only if f has a zero or pole, respectively, at the
corresponding point on the imaginary axis.

Proof. w(e'®) is real for some @ if and only if w((1 — p)/(1 + p)) is real
for the corresponding p on the imaginary axis. Then by the inverse mapping
(1), f(p) is real for that value of p. Since f(it) = iF(t), with F(t) real, f(p)
must be zero or infinity. Equation (1) shows f(p)=0 corresponds to
w((l —p)/(1+p))=+1, and f(p)=oo corresponds to w((l—p)/
(14+p)=-1. Q.E.D.

If u(8) = +1, then v(d) =0. The function v(f#) will change sign in passing
through a zero if and only if the corresponding zero or pole of f on the
imaginary axis is of odd multiplicity. This can be seen as follows.

Again note the fact that w(e®) equals w((1—p)/(1+p)) for
p=—itan(f/2) and substitute w(e'®) = u(6) + iv(6) into (1). Then

1—-w(e®) —v(f)i
L+we'® 14+u@)

f(p)=

Therefore, for the § and p which correspond to each other, sgnv(8) =
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—sgn Im f(p) whenever v(f)+ 0, and v(f) will change sign exactly when
Im f(p) does so. Imf(p) changes sign as p varies along the imaginary axis
when p goes through a zero or pole of odd multiplicity, as we can verify by
considering the series expansion for f taken about such a zero or pole. For
example, if p,=it, is a zero of order 2k + 1, with ¢, real, then
f(p)=c(p —ity)*™*' + (higher order terms), ¢ # 0, is the Taylor expansion
about the point it,. Taking p = it, ¢ real, we get

f(it) = (it — ity) ' 4 ...

= tic(t —t)* 4 -

Then Im f(it) = F(t) = +c(t — t,)***' + .... This implies that c is real and
that Im f changes sign as ¢ goes through ¢,.

As will be seen in the next section, there is an intimate connection between
the range of ¢ and the location of the poles and zeros of f(p) on the
imaginary axis. The specifics depend on a detailed analysis which we now
proceed to carry out when f(p) is a rational function.

4, PHASE ANGLES GENERATED FROM RATIONAL FUNCTIONS

We begin by giving a variation of the previous theorem relating
specifically to the case where f(p) is a rational function.

THEOREM 1b. Let f be a rational function with real coefficients. Then f
maps the imaginary axis into itself if and only if all the powers in either one
of the numerator and denominator are odd, while all the powers in the other
are even.

Proof. Sufficiency being clear, we prove only necessity. Since f(p) is
odd, the result is immediate if f(p) or 1/f(p) is a polynomial. Hence, let the
unique product representation of f{ p) be

_ Ap" [T, (p—a)”
f(p)— I—[;’:l (P“ bj)tj ’

where the a;, b; are non-zero, distinct complex numbers, s;, #; are positive
integers, A is a constant, and », is an integer. Comparing the factors on both
sides of the equality f(p) = —f(—p), we see that for each factor p — q, in the
numerator there is also a factor p + a; and with the same multiplicity, giving
the even product (p?—a?)*. Similarly for the denominator. Comparing

f(=1) with —f(1), we now have (—1)"* = —1, so that n, is odd. Q.E.D.
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Take f to be in the form

f(x) =A(")/xD(x?) (32)

or

S(x)=xB(x*)/C(x?) (3b)

and allow no common factors in the numerator and denominator. We then
form w(z) as in Eq. (2) and employ Lemma 3 and the succeeding discussion
to determine functional forms for f which give the desired behavior of ¢.
Observe that @ varies from 0 to 7z as p varies from 0 to co along the negative
imaginary axis.

Let Z and P indicate the degrees of the numerator and denominator of a
rational function. Let /= denote negative imaginary axis, plus zero and
infinity. Let Z~ and P~ indicate the number of zeros and poles (without
regard to each one’s multiplicity) on ™.

THEOREM 2. Let f(x) = xB(x*)/C(x?) with Z > P. Let all the zeros and
poles on 1~ be of odd multiplicity and interlacing. Also, let the imaginary
part of f(p) be negative in the open interval between the origin and the first
negative imaginary pole. Then ¢(0), formed as before, varies from 0 to
[2(Z7) — 1|n as 0 varies from O to =.

Proof. We note that Z~ =P~. Also, f(0)=0 and f(co)= o0 are
implied by the form of f and the inequality Z > P. [This zero and pole are of
odd multiplicity because of the opposite parities of the degrees of xB(x?) and
C(x?).] Write r+ 1=Z~ = P~. We can denote the zeros and poles on 7~
by 0, —z,i, —z,i,.., —z,i and —p,i, —p,i,..., —p,i, ®©, respectively, where
O0<p, <z, <+ <p,<z,< 0. By Lemma 3, v(d) is zero and u(f)
alternates from +1 to —1 at the values of # which correspond to these points.
Denote these values by 0=6,< 6, <8, < - <8, < f,,=n Without loss
of generality, we may set ¢(0)=0. Since Imf(p) <0 in (0, —p,i), v(8) is
positive in (0, §,). By Lemma 2, ¢ varies from O to 7 as 4 goes from 0 to 6,.
Because of the odd multiplicity of —p,i, v(#) changes sign as it passes
through 8, and by Lemma 2, ¢ varies from 7 to 2z as € goes from 4, to 6,.
Repeating the argument we find that ¢ varies through an additional length =
as ¢ goes from 6; to 6, ,, until § reaches . In total ¢ has varied from O to
@r+1)m Q.E.D.

THEOREM 3. Let f(x)=xB(x*)/C(x*) with Z < P. Let all the zeros and
poles on I~ be of odd multiplicity and interlacing. Let Im f(p) <O in the
open interval between the origin and the first negative imaginary pole. Then
¢(6) varies from 0 to 2[(Z~) — 1] = as 8 varies from 0 to 7.

Progf. Here Z~ =P~ + 1, and f(0)=f(0)=0. With r+ 1=2Z", we
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write the zeros and poles as 0, —z,i,—z,i...,—z,_,i,00 and
—pyi, —Pyl,.., —p,i, respectively, where 0 <p, <z, <.+ <z, , <p, < .
The corresponding values of § are 0=6,<6,<6,< - <8, , <0, =n
By the same argument as that in the previous proof, ¢(0) = 0 and ¢ varies a
length 7 as 6 varies from §; to ;. In total ¢ varies from O to 2rn.  Q.E.D.

These last two theorems give ¢’s which vary from O to either odd or even
positive multiples of n. If we had used f(x)=A(x?)/xD(x?), the results
would be similar. We observe that

1 —A(X?)/xD(x*) 1 —xD(x?)/A(x?)
1+A4(xY)/xD(x?) ~ 1+ xD()/AxY)"

Therefore, the w(z) arising from 4(x?)/xD(x?) is simply the negative of the
w(z) which comes from the reciprocal. The u(d) and v(f) also change sign.
This means the function ¢(#) is a length 7 out of phase with the ¢ coming
from the reciprocal. The following corollaries are now obvious.

COROLLARY 2. Let f(x)=A(x?)/xD(x*) with Z < P. Let the zeros and
poles on 1~ be of odd multiplicity and interlacing. Let Imf(p) > 0 in the
open interval between the origin and the first negative imaginary zero. Then
0(0) varies from n to 2(Z~ ) = as 6 varies from 0 to m.

COROLLARY 3. Let f(x)=A(x*)/xD(x*) with Z > P. Let the zeros and
poles on 1= be of odd multiplicity and interlacing. Let Imf(p) > 0 in the
open interval between the origin and the first negative imaginary zero. Then
#(0) varies from n to (2Z~ + 1) n as 8 varies from 0 to 7.

We note that f(0)= oo, and f(c0)=0 in the former corollary, but
f(o0) = oo in the latter. In both we may choose ¢(0) = =, and then ¢ varies a
length 7 between each pair of consecutive zeros and poles.

These results can all be extended by permitting ¢ to vary about its initial
value before advancing to the next multiple of 7. In view of the remarks at
the end of Section 2, we see that for f(x)=xB(x?)/C(x?), if we insert
additional zeros (of any multiplicity) between the origin and the first pole on
I~, without violating the relation between Z and P, and if Imf(p) <0
between the last such zero and that pole, then ¢ will cover the same length
interval as before. Equivalently, for f(x)=A4(x?)/xD(x?), if we insert
additional poles (of any multiplicity) between the origin and the first zero on
I~, without violating that same relation, and if Im f(p) > O between the last
such pole and that zero, then ¢ covers the same length interval as before.
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5. EXPLICIT APPROXIMATION RESULTS

If we take ¢ generated by a rational function satisfying a set of conditions
given by any of the theorems or corollaries of the previous section, let us
assume that a continuous function f satisfies f(cos 8} —p}¥(cos )=
a,cos(nd + ¢) for some value, or set of values, of n. We can show
cosnfcos¢ is a rational function in cosf, with Z=M+n+1 and
P=M+1, where M is the largest even power occurring in either the
numerator or denominator of the rational function which generates ¢.
Similarly, sin nf sin ¢ is a rational function with the same denominator and,
Z=M+n+1and P=M + 1. Then, allowing for cancellation of terms, we
have that f— p¥ is a rational function with Z{ M +n+1and P M + 1,
since  f(cos ) — p}¥(cos 8) = a,(cos nf cos ¢ —sinnfsing). The only
functions which may satisfy this are rational f’s with the same bounds on Z
and P. We have the following theorems as a result of this functional form.

THEOREM 4. Generate ¢, via Eq. (2), from a rational function satisfying
the conditions of Theorem 2 (or 3). Let m=n+2Z~ —2 {(orn+2Z~ —3),
where n is a non-negative integer. Lei g(8;n,¢,p,a)=acos(nf +¢)+
p(cos 6), where p is a polynomial of degree k < m, and a is real. Then p is
the best uniform polynomial approximation of degrees k, k + 1,..., m, to g on
0 < 8K n, with error |a|.

Proof. The function g is rational, and g—p=oacos(nf+¢). The
argument (nf + ¢) varies fromOto (n+2Z~ — 1)z (or [n+2(Z~ —1)] 7)
as @ varies from O to = Therefore, cos(nd +¢) has n+2Z" (or
n+ 2Z~ — 1) alternation points. With our restriction on k, the Chebyshev
Alternation Theorem yields the desired result. Q.E.D.

THEOREM 5. Let ¢ and m be as in the previous theorem. Then
cos(nf + ¢) = r(cos ) — p(cos ), where r is a rational function whose
numerator has degree no greater than that of the denominator, p is a
polynomial of degree k < n, and p is the best uniform polynomial approx-
imation of degrees k, k + 1,...,m, to r on 0 0 .

Proof. We have seen that cos(nf + ¢) is a rational function with
ZEM+n+1 and PLM+ 1. By eliminating common factors and
dividing, we get the indicated form for cos(n@ + ¢). The method of the
preceding proof then gives the desired result. Q.E.D.

In Example 1 we establish that the result of [5] can be derived as a
special case of our results. Finally, in Example 2 we give an example, arising
from our method, of an error function which is transcendental.

640/34/3-5
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EXAMPLE 1. We consider the following function for —1 <t < 1,

W4 0[( 42— (1 - p)]
TP = AT A =p)]

This is of the form (3b) for both odd and even values of a. If a is odd, then
Z=aq,P=a—-1,Z =P =(@+1)/2. Ifaiseven, then Z=a— 1, P=aq,
Z= =P +1=(a+2)/2. The zeros are at (1—p)/(1+p)=e>™",
k=0, l,.,a— 1, with values k=0, 1,..., [(a — 1)/2] corresponding to values
of pin [0, —o0), or 0 8 < 7. ([x] = greatest integer less than or equal to
x.) The poles are at (1 —p)/(1 +p)=e¥* V"2 j=0,1,.,a— 1, with the
values j =0, 1,..., [(@ — 2)/2] corresponding to values of p in [0, —o0), Or
0< 0 <n For a=odd, j= (a— 1)/2 gives a pole at p=—oc0 (6 = 7). This
last pole is not counted in P. For a = even, k = a/2 gives a zero at p = —o0
(6 = m), which is not counted in Z. The zeros and poles are of multiplicity
one, and they interlace. The sign of Im f(p) between the origin and the first
negative imaginary pole [(1 —p)/(1 + p)=exp(n/a)i] can be evaluated at
((1 = p)/(1 + p))* = exp(mij2) = i. At that point f(p)=—i((1 +1)/(1 — 1)),
and so Im f(p) < O between the origin and the first negative imaginary pole.
By Theorems 2 and 3, we know that when we transform finto w(z) and take
w(e'?) = e'*®, ¢ will increase from 0 to arn as @ goes from 0 to 7.
Using (2), we get

wz)= (- )/ (—tz + (1 + 12 z° — 1)

Letting z = e’®, then separating w(e'®) into its real and imaginary parts, we
find w(e'®) = cos ¢(6) + i sin (), where cos ¢ and sin ¢ are given by

(1 —£*)sin af

sin ¢ = ,
in¢ 1+t2—2tcosab

~2t 4+ (1 4+ t*) cos afl

cos g =
¢ 1 +1*—2¢tcosaf

Let n = ak and form a cos(ak® + ¢), with a = t**'/(1 — ¢*). Then,

a[cos a(k + 1) @ — 2t cos ak@ + t* cos a(k — 1) 6]

a cos(akd + ¢) = 1 + 12— 2tcosaf

We can verify that

k k+2

1 —tcosal Yo
— N ¢ cos ajf — cosakt
1+ —2tcosad = 1 Ts

a cos(akf + ¢) =

= r(cos §) — p(cos 6).
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In accordance with Theorem 5, the polynomial p, which is of degree ak =n,
is the best uniform polynomial approximation of degrees ak, ak + 1,...,m=
a(k + 1) — 1, to the rational function r.

This is the result of Rivlin [5], and is indeed a special case since ¢ is
independent of the choice of k.

ExaMpLE 2. Let f(p)=pexp((l +p*)/(1 —p?)) and note that f is
analytic on the imaginary axis except for a pole at infinity. Also, f (0) =0.
Defining F by f(it)=iF(t), we have F(t)=texp((1—?)/(1+1%)).
Therefore, as in Section 3,

1 —s?
_ 2
1 —s"exp [2 <1+s2)] 5

cos 4(6) = =14 2
1+s%exp |2 L= 1+s%exp|2 _l—s)
P 1+5° P 1+s?
1 —s?
2s exp (T—{?)
1 —s?
1+5? 2 |——
w2 (55
where s =tan(f#/2). (Since f(—i)=—i, we have conditions analogous to
Theorem 2.)

As 6 goes from O to 7, s increases monotonically from 0 to oo. cos ¢
decreases from +1 to —1, while sin¢ > O except at the endpoints of the
interval. Therefore, ¢ ranges from O to 7, and ¢, = a cos(n@ + ¢) has n + 2
alternations. As in Theorem 4, any polynomial p of degree k < n is the best
uniform polynomial approximation to ¢, + p for degrees &, k + 1,..., n.

Since 52 = (1 — cos 8)/(1 + cos §) = (1 — x)/(1 + x), we have x = (1 —s?)/
(1 +5%). Also, ssinf@=1—cos §=1— x. Hence,

2(1 4+ x)
1+x+(1—x)e2x]

_sinnf  2(1—x%)e
sinf 1+x+(1—x)e*’

b

sin ¢(8) =

b

€
-2 — cos né [——1 +
a

Here, cosnf=7T,(x) and (sinnf)/(sinf)=U,_,(x) are the Chebyshev
polynomials. Therefore, for example, T, is the best approximation p¥ to

T,(x)— (1 —x)e’U,_,(x)
1+x+(1—x)e” ]

fx)=2(1+x) [
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